Contact: Sharon Phillips

Phone: 1-954-575-4973

Cell: 1-954-540-1896

Twitter: HBOT 2010


or visit:


Monday, June 7th, Newport Beach, CA: Physicians and medical practitioners from around the globe will gather at the Irvine Marriott Hotel July 22-25, for “HBOT 2010”, an educational symposium, of world-wide medical significance.

Their focus will be on the healing and life sustaining benefits of oxygen, in the treatment of serious medical conditions. New to this year’s symposium will be the latest information on the treatment of war veterans with blast injuries, as well as cutting edge information on HBOT’s use for people with cancer and diabetes.

Hyperbaric Oxygenation Therapy Treatment, (known as HBOT), originated with the treatment of deep sea divers many years ago. Today it is successfully used to treat a wide range of illnesses, injuries and chronic conditions. “Dozens of scientific papers will be presented by international specialists, who are making medical history using oxygen — in its many forms — for healing and sustaining life. This conference will feature the most focused group of oxygen specialists in the world,” said Dr. Donald L. Jolly-Gabriel, Ph.D., Chairman of the Richard A. Neubauer Research Institute, (RANRI) sponsors of the event. This is the 7th bi-annual symposium, presented by the institute.

Some 30 experts, using oxygen in the successful treatment of such diverse conditions as: traumatic brain injury, autism, cerebral palsy, lyme disease, spinal cord injury, alzheimer’s, stroke, diabetic wounds, multiple sclerosis, near-drowning, coma, anoxic encephalopathy, childhood mitochondrial diseases and more; will meet in Orange County, CA., for the first time. An exposition featuring some of the most advanced HBOT equipment and items in related fields will also be available to those in attendance.

“This forum provides a rare opportunity for the public to join the medical community in learning about break-through modalities in use here and abroad, to treat these serious conditions,” Jolly-Gabriel said. “Parents who are seeking alternative treatments for children with any of these conditions are urged to attend. They will interact doctors using HBOT and learn first-hand from and patients how HBOT has changed their prognosis and enhanced their lives.

“Oxygen is God’s gift to us,” Jolly-Gabriel added. “It is the single most important element necessary to sustain life. Although it is readily available everywhere, we are only now beginning to realize its true medical significance. It is a magnificent step forward in medicine.” The symposium will provide educational interaction with many of the world’s most eminent experts in the field.


Among featured speakers will be professor K. K. Jain, author of, “The Handbook of Hyperbaric Oxygen Therapy,” (now the “Textbook of Hyperbaric Medicine, currently in its fifth edition).” Jain is a retired professor and a highly respected consultant in neurology and hyperbaric medicine. He is also the author of more than 415 publications including 16 books on related topics.

Karen Simmons, CEO and founder of “Autism Today,” will be featured at an Author’s Luncheon Friday, July 23 at noon. Simmons, is the co-author of “Chicken Soup for the Soul, Children with Special Needs,” (co-authored with Jack Canfield, Mark Victor Hansen and Heather McNamara); and both “The Official Autism 101 Manual,” (an IPPY Gold Medal winner); and the recently released, “Autism Tomorrow, The Complete Guide to helping your Child Thrive in the Real World.”

Dr. Paul Harch, of the University of Louisiana Medical Center, who developed the HBOT protocol being used to restore the lives of American military personnel, following Traumatic Brain Injuries in combat, will be lauded for his work, during the symposium.

In addition, Some of the most recent studies conducted by world renowned brain specialist Dr. Daniel Amen, M.D., of Newport Beach, will also be presented.



HBOT 2010 is designed not only for medical professionals, but for or those who are affected by any of the conditions listed above, or involved in related associations, (i.e. the America Cancer Society, The Autism Society, the Multiple Sclerosis Society, etc.). The HBOT 2010 agenda includes new approaches in oxygen therapy for the treatment and management of these illnesses.

Attendance will be beneficial to medical professionals including: Neurologists, Pediatricians, Neonatologists, Perinatologists, Physical Therapists, Physiatrists, Orthopedic Surgeons and other professionals. It will afford them new insights into this remarkable medical option as well as practical applications for its use in conjunction with their specialties. Non-professionals such as: care-takers in coma recovery cases, stroke recovery or family members assisting people with disabilities, will also find this program beneficial. “We have done everything possible to make attending this conference exciting, convenient and affordable,” Jolly-Gabriel said. HBOT 2010 has negotiated a conference rate at the Irvine Marriott Hotel, of just $109 per night for those who register before June 15.

Register on-line at Or, visit the web site for additional information on the coming symposium, conference and exposition.

 (Medical writers and bloggers, affiliated recognized media outlets, are invited to cover the event)

Sharon Phillips

HBOT2010 – July 22-25 Marriott Hotel, Irvine, California

Tel: 954 540 1896

Fax: 954 827 0723



Issue Number: 

1 January 2010

   Hyperbaric oxygen therapy (HBOT) can be a valuable adjunctive treatment for patients with various types of wounds. These expert panelists discuss their indications for HBOT, their treatment protocol and barriers to the use of HBOT.

   Q: Do you use HBOT for your wound patients and what are the indications?

   A: As Caroline E. Fife, MD, explains, hyperbaric oxygen therapy is the administration of oxygen to the entire body at atmospheric pressures greater than 1.5 times sea level pressure. She notes one should not confuse this with topical oxygen administered to part of the body or oxygen (or air) via “zip up” chambers at very low atmospheric pressures. The usual treatment pressure for wound-related problems is at least 2.0 atmospheres absolute (ATA) although she notes that sometimes patients receive pressures of 2.4 or 2.5 ATA depending on the situation. At these pressures, one can expect tissue oxygen levels in excess of 600 mmHg.

   Dr. Fife notes hypoxia is a common cause of wound healing failure. Non-healing amputations, ulcers due to vascular insufficiency and diabetic foot wounds all share the problem of tissue hypoxia, which Dr. Fife says is usually due to ischemia from vascular disease.

   She says normalizing tissue PO2 enhances resistance to infection, collagen deposition and angiogenesis. However, Dr. Fife sees a disconnect between the rationale for HBOT and what physicians can treat in terms of current Medicare coverage policy.

    “While third-party payers require us to ‘bucket’ wounds and ulcers into neat diagnostic categories, real patients rarely cooperate by falling into clear disease classification systems,” explains Dr. Fife. “A variety of problem wounds exist and are usually the result of multiple local and systemic factors.”

   Kazu Suzuki, DPM, thinks HBOT is “an invaluable adjunctive therapy in modern wound care clinics.” He notes about 10 to 15 percent of his patients who present at his wound care centers have indications for HBOT and he recommends it routinely when indicated. Dr. Suzuki works with the three HBOT centers near his wound care clinic. Two of the centers have monoplace chambers while the other has a multi-place chamber that fits about 10 people at the same time.

   Dr. Suzuki has discovered that most patients prefer monoplace chambers because of the privacy with more open appointment times. This is in contrast to multi-place chamber clinics, which have a fairly rigid schedule for treatment, according to Dr. Suzuki. If the patient is five minutes late, he or she will miss the treatment. However, he always emphasizes that the efficacy of HBOT would be the same in either size chamber, since “oxygen is oxygen” regardless of which clinic they use.

   Michael DellaCorte, DPM, CHT, uses HBOT as an advanced treatment for patients with diabetes and says he has attained “very positive” results. He combines several treatment options with HBOT. These treatment options include negative pressure wound therapy (NPWT), PICC lines, Apligraf (Organogenesis) or Dermagraft (Advanced Biohealing) along with weekly wound care and offloading.

   Q: What are the indications for HBOT? When would you incorporate HBOT into your treatment protocol?

   A: Dr. Suzuki follows the guidelines of the Undersea Hyperbaric Medical Society (UHMS, Both he and Dr. DellaCorte use HBOT for diabetic foot ulcers of Wagner grade III or higher.

   In evaluating all the randomized controlled trials (RCTs) on diabetic foot ulcers over the past 10 years, Dr. Fife says only HBOT trials have enrolled patients with Wagner III grade ulcers and/or significant tissue ischemia. She points out that all other RCTs excluded patients with ischemia.1 Accordingly, Dr. Fife says HBOT “stands alone in demonstrating benefit for ischemic diabetic foot ulcers.”

   The Centers for Medicare and Medicaid Services (CMS) cover HBOT for diabetic foot ulcers based on the RCT data.2 As Dr. Fife maintains, while there is no reason to believe that HBOT would not be equally effective for ischemic ulcers in non-diabetics, HBOT is only “covered” for Wagner III diabetic foot ulcers and not for similar limb-threatening ulcers in patients without diabetes. She also notes that HBOT is covered for acute arterial ischemia.

   Drs. Suzuki and DellaCorte will use HBOT for patients with chronic osteomyelitis. Dr. Suzuki notes the synergy among most antibiotics and HBOT, adding that he uses magnetic resonance imaging to monitor treatment progress.

   Hyperbaric oxygen is also covered for chronic refractory osteomyelitis as it increases the oxygen concentration in bone, and directly kills or inhibits the growth of organisms that prefer low oxygen concentrations, according to Dr. Fife. She notes that HBOT also augments the antibacterial effect of certain antibiotics that have an oxygen dependent transport mechanism across the bacterial cell wall. Dr. Fife says these antibiotics include aminoglycosides, vancomycin, quinolones and certain sulfonamides.3

   Drs. Suzuki and DellaCorte also use HBOT for skin flap failure. When it comes to a transmetatarsal amputation, if the plantar skin flap does not heal properly, Dr. Suzuki immediately sends the patient for HBOT for skin flap salvage. He maintains that HBOT in this situation is far better than doing another proximal amputation. Dr. DellaCorte points out that transmetatarsal amputations that start to necrose do not do well with HBOT. Emphasizing that hyperbaric oxygen is not a substitute for revascularization, Dr. DellaCorte says he will refer the patient for bypass first if appropriate for the given patient.

   Dr. Fife says HBOT can help treat compromised flaps that appear to have post-op ischemia. She adds that HBOT can also help minimize the amount of tissue that does not survive after a plastic surgical “flap” and reduce the need for repeat flap procedures.4

   Dr. Suzuki and his partner, a plastic reconstructive surgeon, use HBOT for many cancer patients who have had radiation. Unless the patient received a very short course of radiation treatment, he says most radiation recipients suffer from radionecrosis of soft tissue (burn wound of skin to internal bleeding) and bone (spontaneous fracturing of jaw bone, etc).

    “This HBOT indication is often overlooked but we have made a lot of people happy by offering this treatment option,” says Dr. Suzuki.

   In regard to protocol, Dr. Suzuki starts with the initial consultation with the hyperbaric doctor on site and then prescribes 20 sessions of HBOT for wound indications such as diabetic foot ulcers. Each session is usually 60 to 90 minutes of 2.0 to 2.8 ATA, although each clinic has its own protocols. He says patients with osteomyelitis and radionecrosis indications usually need 30 sessions or more. It is rare but when it comes to traumatic amputation of toes, Dr. Suzuki would recommend twice daily HBOT treatment for a week after re-attachment of the digit and then may reduce that to once-a-day treatment.

   Although treatment varies according to the patient condition, Dr. DellaCorte says most patients receive 90 minutes of HBOT at a pressure of 2.4 ATA for a total time of about 106 minutes in the chamber, including eight minutes to get to the appropriate pressure and eight minutes to decompress. Six weeks or 30 dives/treatments is his standard protocol. As Dr. DellaCorte notes, CMS requires re-evaluation every 10 dives/treatments. If there is no improvement, he stops treatment but treatment will continue if the wound is improving.

   Dr. Fife uses transcutaneous oximetry to screen patients with non-healing wounds to determine if spontaneous healing is possible. If TcPO2 values are low and do not increase with sea level oxygen breathing, she says patients are likely to have vascular disease. She will perform revascularization when possible and subsequently reassess the TcPO2.5

   If values continue to be low and patients have a diagnosis for which HBOT would be covered, Dr. Fife performs in-chamber TcPO2 studies. As she notes, outcome studies suggest that 84 percent of diabetic foot ulcers with in-chamber values >200 mmHg are likely to respond to HBOT. Dr. Fife says treatment can be at 2.0 ATA or greater as long as in-chamber TcPO2 values are >200 mmHg.6 Dr. Fife says it is not clear whether the same in-chamber values are predictive of success for arterial ulcers or failing flaps. The average number of treatments for a DFU is around 35, says Dr. Fife. She notes that if patients fail to demonstrate benefit after 20 treatments, then HBOT should stop.

   Q: In your experience, what is the main barrier to treatment with HBOT?

   A: Dr. Suzuki notes one contraindication is untreated pneumothorax. However, Dr. Fife adds that one can treat pneumothorax if it is vented. Dr. Suzuki asks patients to refrain from getting the treatment when they have sinus congestion as high pressure may exacerbate the symptoms. If the patient is having a hard time clearing the ears during HBOT, both he and Dr. Fife suggest putting pressure equalization tubes in the patient’s ears.

   Dr. DellaCorte adds that ear barotrauma due to chamber pressure and claustrophobia are other barriers to treatment. Dr. Fife notes another relative contraindication includes pulmonary air trapping (chronic obstructive pulmonary disease). Patients with COPD are at risk for pulmonary barotrauma and Dr. Fife says one must decide whether it is safe for these patients to undergo HBOT. Patients with uncontrolled seizures are not recommended for HBOT, according to Dr. Fife.

   Dr. Suzuki’s patients sometimes complain of logistical problems since the ideal HBOT occurs Monday through Friday for 20 days, meaning four weeks of commitment. For out-of-town patients (commuting for an hour or longer) or dialysis patients, he recommends treatment three times a week (on non-dialysis days). Outcome data suggest that regular attendance to therapy affects whether patients benefit, according to Dr. Fife.7 She adds that therapy five days per week can be difficult for chronically ill patients.

   Dr. Suzuki refutes the claim that patients on VAC therapy (KCI) cannot be in the chamber. He says as long as the HBOT technicians know how to disconnect and reconnect the suction hose to keep the machine outside of the chamber, patients using VAC therapy can successfully undergo treatment with HBOT.

   Drs. DellaCorte and Fife note the barrier of insurance coverage. Although it is likely that non-diabetic patients with ischemia would benefit, Dr. Fife says in the absence of acute arterial insufficiency, a failing flap or osteomyelitis, patients whose only diagnosis is chronic arterial disease do not meet current coverage guidelines.

    “This is unfortunate since there are no other interventions likely to prevent limb loss if revascularization has failed to sufficiently increase tissue oxygen levels,” explains Dr. Fife.

   Research has shown that HBOT is cost effective in comparison to amputation and increases quality of life years.8,9 Dr. Fife notes the cost benefit of HBOT is enhanced by proper patient selection. Patients are best referred before tissue loss has progressed to the point where amputation is inevitable, says Dr. Fife. She notes that transcutaneous oximetry can be useful in screening out patients who are likely to get well without HBOT or patients who cannot be helped.

   Dr. Fife says one should not use HBOT as an alternative to proper revascularization. She says those on dialysis or those who have a transplant are less likely to benefit from HBOT, but are also less likely to benefit from any other intervention.

   Dr. Fife maintains that HBOT must be under the supervision of a properly trained advanced care practitioner who can manage complications.

    “When hyperbaric treatment is used in conjunction with standard wound care, researchers have demonstrated improved results in the healing of difficult or limb-threatening wounds in comparison to routine wound care alone,” she says.

Dr. DellaCorte is a Certified Hyperbaric Technologist. He is also a Fellow of the American College of Foot and Ankle Surgeons, and a Fellow of the American College of Foot and Ankle Orthopedics and Medicine. He is in private practice in Maspeth, N.Y.
Dr. Fife is an Associate Professor in the Department of Internal Medicine, Division of Cardiology at the University of Texas Health Science Center in Houston. She is the Director of Clinical Research at the Memorial Hermann Center for Wound Healing and Hyperbaric Medicine.

Dr. Suzuki is the Medical Director of Tower Wound Care Center at the Cedars-Sinai Medical Towers. He is also on the medical staff of the Cedars-Sinai Medical Center in Los Angeles and is a Visiting Professor at the Tokyo Medical and Dental University in Tokyo, Japan.


Kazu Suzuki, DPM, CWS


1. Carter MJ, Fife CE, Walker D, Thomson B. Estimating the applicability of wound-care randomized controlled trials to general wound care populations by estimating the percentage of individuals excluded from a typical wound care population in such trials. Adv Skin Wound Care 2009; 22(1):316-24.
2. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. Diabetes Care 1996;19(12):1338-1343.
3. Mader JT, Shirtliff ME, Calhoun JH. The use of hyperbaric oxygen in the treatment of osteomyelitis. In: Hyperbaric medicine practice. Best Publishing Co., Flagstaff, Arizona, 1999, pp. 603-616.
4. Zamboni WA. Applications of hyperbaric oxygen therapy in plastic surgery. In: Oriani G, Marroni A, Wattel F, eds. Handbook on hyperbaric oxygen therapy. Springer-Verlag, New York, 1996.
5. Fife CE, Smart DR, Sheffield PJ, Hopf HW, Hawkins G, Clarke D. Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. Undersea Hyperb Med 2009; 36(1):43-53.
6. Fife CE, Buyukcakir C, Otto GH, Sheffield PJ, Warriner RA, Love TL, Mader J. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy; a retrospective analysis of 1144 patients. Wound Rep Regen 2002; 10(4):198-207.
7. Fife CE, Buyukcakir C, Warriner R, Sheffield P, Love T, Otto G. Factors influencing the outcome of lower extremity of diabetic ulcers treated with hyperbaric oxygen therapy. Wound Repair Regen 2007; 15(3):322-331.
8. Cianci P, Petrone G, Drager S, Lueders H, Lee H, Shapiro R. Salvage of the problem wound and potential amputation with wound care and adjunctive hyperbaric oxygen therapy: an economic analysis. J Hyperbaric Med 1988; 3:127-141.
9. Guo S, et al. Cost effectiveness of adjunctive hyperbaric oxygen in the treatment of diabetic ulcers. Int J Technol Assess Health 2003; 19(4):731-737.

Friends and colleagues please post a comment in support of DR HARCH’S pilot trial. Also please thank Congressman Jones for his support. Write whatever is appropriate for you individually. We would like Congressman Walter Jones to know there is a lot of energy surrounding and supporting this.

Here is the video below:

The AAHA, American Association for Hyperbaric Awareness, has been working quietly in the background for the last couple of years, representing your interests, namely, having hbot available to you when it is needed.

The AAHA does not represent any manufacturer or company trying to sell HBOT products.
The AAHA is not being used to sell chambers
The AAHA is not being used to promote any doctor or hbot center or to recruit business.
The AAHA has not made any promises or guarantees to you.
The AAHA has never asked you to pay any fees, dues, or contributions.
The AAHA is a 501 (c) 3 nonprofit organization dedicated to making America aware of the value of HBOT and the need to have insurance and Medicaid pay for hbot for brain injury or neurological conditions.
The AAHA is the only organization following a solid plan to bring HBOT to the forefront for anyone you know who may benefit.

The TV taping of a PBS program telling about the benefits of HBOT for neurological injury taking place in Feb. is the direct result of the AAHA’s efforts. This program will be aired in the Dallas-Ft. Worth area on PBS the end of Feb. It will be followed by PBS airing all over the USA in the weeks to follow.

Can you imagine the effect this can have on your chances of getting affordable HBOT in the future. With this type exposure, the chances of getting it approved for insurance coverage will be much stronger. Insurance companies will be viewing it and it can be used to convince them to cover your hbot.

Isn’t it about time we supported the AAHA? All you have to do to support them is join AAHASupporters@ yahoogroups. com. The strength is in numbers. If the AAHA can get this time of program across the USA and public officials and politicians begin to recognise HBOT, then we want the AAHA to continue to have the backing they need to get things done. If they know thousands of people are behind this effort they will listen. It is time for you to begin spreading the word to all your friends on all your email forums on how important it is to join the AAHA.

Remember, our strength lies in numbers. On the 2 main hbot groups, HBOTherapyforAutism and NeuroHBOT, we have almost 2400 families represented. If all of you would simple join the AAHA supporters group, when the time comes to write a letter, send an email, or take whatever action is needed in support of the AAHA, we can help them have the strength they need to be heard.

The AAHA has been in the background, now it is time to bring them to the forefront.

To join the AAHA, you can simply send a blank email to AAHAsupporters- subscribe@ yahoogroups. com or go the web page at http://health. com/group/ AAHAsupporters/

Thank you and please support the AAHA
Robert Hartsoe

Paul G. Harch, M.D.
1816 Industrial Boulevard
Harvey, LA 70058
504-309-4948 or 504-366-1445
Fax: 504-366-1029



John Hopkins University School of Medicine
Doctor of Medicine, 1980


The University of California, Irvine
Bachelor of Science, Biology
Magna cum laude, Phi Beta Kappa



13th Annual National Oceanographic and Atmospheric Administration Physician Diving Accident Medical Management Course, NOAA facility, Key Biscayne, Florida

7/1986 – 7/1987

Radiology resident, Louisiana State University School of Medicine, Charity Hospital, New Orleans, Louisiana


Orientation course in Hyperbaric Oxygen Therapy and Wound Care, Long Beach Medical Center, Long Beach California

6/1980 – 12/1982

Two years general surgery training at the University of Colorado Health Sciences Center, Denver, Colorado, with six months leave for auto-ped accident



LSU Animal Care Orientation Training for basic science investigators.


Completion of self-certification course/Human Subjects Protection Educational Program for clinical investigators.


7/5/2005 – Present

Director, LSUHSC/Medical Center of Louisiana, New Orleans Hyperbaric Medicine and Wound Care Department

7/1993 – Present

Medical Director, LSU Hyperbaric Medicine and Wound Care Fellowship Program.  JoEllen Smith Medical Center (New Orleans, LA) 1993-5/1999, St. Charles General Hospital (New Orleans, LA) 5/1999-12/2004, West Jefferson Medical Center (Marrero, LA) 12/2004-present, Medical Center of Louisiana New Orleans 7/5/2005 – present.

(504) 568-4806; CELL (504) 452-9166

New Orleans, LA — Dr. Paul Harch, LSUHC Clinical Associate Professor of Emergency Medicine, is the principal investigator of a pilot study to determine the effectiveness of one or two courses of hyperbaric oxygen therapy in treating chronic traumatic brain injury (TBI) and TBI with post traumatic stress disorder (PTSD).  The study grew out of previous experience in treating TBI with hyperbaric oxygen therapy with improvement in symptoms and function.

Thirty participants will be recruited — half will have traumatic brain injury and half will have both traumatic brain injury and post traumatic stress disorder.  The participants will undergo oral, written, and computer tests, ass well as an MRI (if the participant has not had one since injury) and SPECT brain imaging.  Participants will have 40 hyperbaric oxygen therapy treatments and can request up to 40 more if not improved to his/her satisfaction.

Certain conditions preclude participation including pregnancy and increased risk for rare HBOT complications.

Possible benefits include improvement in thinking ability, quality of life, and reduction of PTSD symptoms: however there may be no benefits.

Results will be measured by brain blood flow imaging, written tests for memory and thinking, and questionnaires about quality of life and health.

According to the Centers for Disease Control and Prevention, a traumatic brain injury (TBI) is caused by a blow or jolt to the head or a penetrating head injury that disrupts the normal function of the brain.  The severity of a TBI my range from “mild,” i.e., a brief change in mental status or consciousness to “severe,” i.e., an extended period of unconsciousness or amnesia after the injury.  TBIs contribute to a substantial number of deaths and cases of permanent disability annually.  CDC estimates that at least 5.3 million Americans, about 2% of the U.S. population, currently have a long-term or lifelong need for help to perform activities of daily living as a result of a TBI.

TBI has been called the signature wound of the Wars in Iraq and Afghanistan.  A RAND Corporation study released in April “estimates that about 320,000 service members may have experienced a traumatic brain injury during deployment — the term used to describe a range of injuries from mild concussions to severe penetrating head wounds.  Just 43 percent reported ever being evaluated by a physician for that injury.  One-year estimates of the societal cost associated with treated cases of mild traumantic brain injury range up to $32,000 per case, while estimated for treated moderate to severe cases range from $268,000 to more than $408,000.  Estimates of the total one-year societal cost of the roughly 2,700 cases of traumatic brain injury identified to date  range from $591 million to $910 million.”

A 2005 article in the New England Journal of Medicine, Traumatic Brain Injury in the War Zone, by Susan Okie, MD, says “among surviving soldiers wounded in combat in Iraq and Afghanistan, TBI appears to account for a larger proportion of casualties than it has in other recent U.S. wars.  According to the Joint Theater Trauma Registry, compiled by the U.S. Army Institute of Surgical Research, 22 percent of the wounded soldiers from these conflicts who have passed through the military’s Landstuhl Regional Medical Center in Germany had injuries to the head, face, or neck.  This percentage can serve as a rough estimate of the fraction who have TBI, according to Deborah L. Warden, a neurologist and psychiatrist at Walter Reed Army Medical Center who is the national director of the Defense and Veterans Brain Injury Center (DVBIC).  Warden said the true proportion is probably higher, since some cases of closed brain injury are not diagnosed promptly.”

For more information or to find out if you qualify, call 504-309-4948.

Department of Defense Brain Injury Rescue and Rehabilitation
The Use of Hyperbaric Medicine in Acute Trauma
Paul G. Harch, M.D.
Clinical Asistant Professor and
Director, Hyperbaric Medicine Fellowship,
Louisiana State University School of Medicine
New Orleans, Louisiana

Hyperbaric oxygen therapy (HBOT) is the use of greater than atmospheric pressure oxygen as a drug to treat basic disease processes and ther diseases(1).  In the simplest terms HBOT is a pharmaceutical or prescription medication similar to the thousands of medications routinely prescribed by physicians everyday throughout the world.    The key differences with HBOT, however, are that it is a drug that treats basic disease processes that are common to every disease, that it acts as a repair drug in these processes, and that it replaces an essential element of life for which there is no substitute, oxygen.  This effectiveness in treating basic common disease processes explains the ability of HBOT to act in a generic beneficial fashion to a multitude of diseases, including and esprecially traumatic injuries to all areas of the body.

HBOT has both acute and chronic drug effects.  HBOT exerts these effects by obeying the Universal Gas Laws, the most important of which is Henry’s Law (2).  Henry’s Law states that the concentration of a gas in solution is proportional to the pressure of that gas interfacing with the solution.  For example, the amount of oxygen dissolved in a glass of water is directly proportional to the amount of oxygen in the air.   Similarly, the amount of oxygen dissolved in our blood is directly proportional to the amount of oxygen we are breathing.  According to Henry’s Law, there is a very small amount of oxygen dissolved in the liquid portion of the blood when breathing air (21% oxygen) at sealevel.  The remainder and majority of oxygen is bound to hemoglobin in the red blood cells giving a 98@ saturation of hemoglobin.    As we increase the amount of oxygen in inspired air by applying a nasal cannula or facemask of pure oxygen the final 2% of hemoglobin is quickly bound by oxygen.  All of the remaining available oxygen interfaces with and is dissolved in the liquid portion of the blood.  Once we reach 1.5 liters/minute of supplemental  oxygen by a tight fitting aviator’s mask or non-rebreather mask we have reached the maximum amount of oxygen that can be dissolved in blood by natural means.  However, this is not the absolute limit.  By placing a patient in an enclosed chamber,  increasing the pressure above ambient pressure, and giving the patient pure oxygen we can cause an increase in dissolved oxygen in blood in direct proportion to the pressure increase.

At the point of three atmospheres absolute of pure oxygen (3 ATA), just slightly more than the amount the U.S. Navy has used for 50 years in the treatment of divers with decompression sickness, we can dissolve enough oxygen in the plasma to render red blood cells useless.  Under these conditions as blood passes through the tiniest blood vessels tissue cells will extract all of the dissolved oxygen in the blood without touching the oxygen bound to hemoglobin.  This amount of dissolved oxygen alone can exceed the amount necessary for the tissue to sustain life.  In other words, you don’t need red blood cells for life at 3 ATA of 100% oxygen.   This physical phenomenon was proven in a famous experiment in 1960 and published in the first edition of the Journal of Cardiovascular Surgery by Dr. Boerema of the Netherlands (3).  Dr. Boerema anesthetized pigs, removed nearly all of their blood, and replaced it with salt water while he compressed them to 3 ATA.  At 3 ATA in a hyperbaric chamber pigs with essentially no blood were completely alive and well.  This phenomenon has been proven effective in other experiments and is the basis for clinical use in extreme blood loss anemia (4).  The best examples are Jehovah’s Witness patients who have lost massive amounts of blood and because of a religous proscription are unable to receive blood transfusions.  These patients are kept alive over weeks with repetitive HBOT until their blood system is able to naturally produce enough blood to sustain life.  This ability to maintain life without blood has obvious potential to battlefield casualties awaiting transfusion.

As a result of Henry’s Law HBOT is able to exert a variety of drug effects on acute pathophysiologic processes.  These have been well documented over the past 50 years and include reduction of hypoxia (5,6), inhibition of reperfusion injury (7), reduction of edema (8), blunting of systemic inflammatory responses (9), and a multitude of others (10).  In addition, repetitive HBOT in wound models acts as a DNA stimulating drug to effect tissue growth (11,12).  HBOT has been shown to interact with the DNA of cells in damaged areas to begin the production of repair hormones, proteins and cell surface receptors that are stimulated by the repair hormones (13,14).  The resultant repair processes include replication of the cells responsible for tissue strength (fibroblasts) (15), new blood vessel growth (16,17), bone healing and strengthening (18), and new skin growth.

To best understand the effectiveness and potential of HBOT one must understand basic disease processes, commonly referred to as pathophysiolocic processes.  Every insult or injury to living organisms, particularly human beings, is distinct and different, and can be characterized by the type of force, energy, or peculiar nature of that insult.  For example, a blast force is different from a blunt force, an electrical injury, a toxic injury, a biological injury, infectious injury, thermal injury, nuclear injury, gunshot wound, stab wound , burn, or even a surgical wound.  Regardless of the exact nature and idiosyncratic character of the injury, however, every acute injury has a common secondary injury called the inflammatory process (20).  This secondary injury in fact causes more damage than the primary injury.  Moreover, it is a universal process common to every human being regardless of race, color, creed, size, gender or genetics.  The beauty of hyperbaric oxygen therapy is its ability to powerfully impact the inflammatory reaction and its component processes like no other drug in the history of medicine.

The inflammatory process begins with tissue injury.  The injury can be as innocuous as apposition of tissues that normally do not interface against one another, such as a spinal bony compression of a nerve root due to a degenerative disk.  Most often, however, tissue injury results from much larger forces such as the type seen in military conflict.  Once tissue is disrupted, proteins, fat, other molecules, and disrupted tissue is exposed to the circulation.  In addition, blood vessels are damaged both directly by mechanical forces and indirectly by tissue fragments that interact with the vessel walls.  The net effect is bleeding from broken blood vessels and dilation of the unbroken blood vessels.  As the vessels dilate, blood pressure forces the liquid portion of the blood out of the vessels.  The extravasated fluid, now referred to as edema, exerts its own pressure that collapses blood vessels, leading to a reduction of blood flow.  This compounds the reduction in blood flow already caused by disrupted blood vessels and bleeding.  In addition, white blood cells in the the circulation are attracted to the damaged tissue by molecules released from the damaged tissue.  The white blood cells traverse the blood vessel walls in a process called emigration (21) and disgorge themselves of their digestive enzymes.  These enzymes cause further tissue damage in an attempt to clean up the primary damage, but also cause constriction of blood vessels to limit further bleeding and leakage of fluid.